Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Ryspek Usubamatov

Ryspek Usubamatov

Kyrgyz Technical University, kyrgyzstan

Title: MBGT-Mathematical Basis of Gyroscope Theory

Biography

Biography: Ryspek Usubamatov

Abstract

Gyroscope devices are primary units for navigation and control systems in engineering. Th e main property of the gyroscopic
device is maintaining the axis of a spinning rotor for which mathematical models have been formulated on the changes in
the angular momentum. However, known theories for the gyroscope eff ects do not match actual forces and motions underway.
Th e nature of the gyroscope properties is more complex than represented by contemporary theories. Recent investigations
have demonstrated that gyroscope’s spinning rotor with symmetrical location of the supports, have four basic inertial forces
interdependently and simultaneously acting on them around two axes. Th ese forces are generated by the mass elements and
center mass of the spinning rotor and represented by centrifugal, Coriolis and common inertial forces as well as changes
in angular momentum. Th e applied torque generates internal resistance torques that based on the action of centrifugal and
Coriolis forces and the precession torques generated by common inertial forces and by the change in the angular momentum.
Th e new mathematical models for gyroscope eff ects describe clearly and exactly the physics of all known and new gyroscope
properties. New analytical approach for the most unsolvable motions of the gyroscope is validated by practical tests. Formulated
mathematical models for acting torques in the gyroscope represent fundamental principles of gyroscope theory based on the
action of inertial forces of classical mechanics. Mathematical models for gyroscope forces and motions can be solved manually.
Th is new theoretical approach for the gyroscope problems represents new challenge in engineering science.